Олимпиада по математике 11 класс
         Олимпиада по математике: задания, решения и ответы на портале 4egena100

Олимпиада по математике 11 класс.           Олимпиадные задания по математике с решением и ответами

Олимпиады по математике с решением и ответами



Олимпиада по математике 11 класс




Олимпиада по математике 11 класс.


Задача

Пусть f(x) - некоторый многочлен,

известно, что уравнение f(x) = x не имеет корней.

Докажите,

что тогда и уравнение f(f(x)) = x не имеет корней.

Подсказка

Выведите из условия, что либо f(x)>x для любого x, либо f(x)<x для любого x.



Решение

Из условия следует, что уравнение f(x)-x=0 не имеет решений.

Поскольку f(x) - x - непрерывная функция,
то она либо всюду положительна,
либо всюду отрицательна,
иначе она бы в некоторой точке принимала значение 0
(по теореме о промежуточном значении).

Пусть f(x) - x всюду положительна.
Это значит, что для любого x выполнено неравенство f(x)>x.

Пусть f(x) = y.
Тогда f(f(x)) = f(y)>y = f(x)>x.

Таким образом, при любом x f(f(x)) - x>0,

т.е. уравнение f(f(x)) = x не имеет корней.

Аналогичным образом, показываем,
что уравнение f(f(x)) = x не имеет корней и в том случае, когда для любого x выполнено неравенство f(x)<x.




Задача 1 :

В игре участвуют два игрока А и Б. Игрок А задаёт значение одного из коэффициентов a, b или c многочлена
x3 + ax2 + bx + c.
Игрок Б указывает значение любого из двух оставшихся коэффициентов. Затем игрок А задаёт значение последнего коэффициента. Существует ли стратегия игрока А такая, что как бы ни играл игрок Б, уравнение
x3 + ax2 + bx + c = 0
имеет три различных (действительных) решения?

Задача 2 :

Пусть
f(x) = (...((x – 2)2 – 2)2 – 2)2... – 2)2
(здесь скобок ( ) – n штук). Найдитеf І(0)

Задача 3 :

Числа a , b и c таковы , что
a2 + b2 + c2 = 1.
Докажите, что
a4 + b4 + c4 + 2(ab2 + bc2 + ca2)2 Ј 1.
При каких a, b и c неравенство превращается в равенство?

Задача 4 :

Пусть прямая L перпендикулярна плоскости P.
Три сферы попарно касаются друг друга так, что каждая сфера касается плоскости P и прямой L. Радиус большей сферы равен 1 .
Найдите минимальный радиус наименьшей сферы.

Задача 5 :

На валютной бирже острова Удача продают динары (D), гульдены (G), реалы (R) и талеры (T).
Биржевые маклеры имеют право совершить сделку купли-продажи с любой парой валют не более одного раза за день.
Курсы валют такие: D = 6G, D = 25R, D = 120 T, G = 4R, G = 21T, R = 5T.
Например, запись D = 6G означает,что 1 динар можно купить за 6 гульденов (или 6 гульденов можно продать за 1 динар).
Утром у маклера было 80 динаров, 100 гульденов, 100 реалов и 50400 талеров.
Вечером у него было одинаковое число динаров и талеров.
Каково максимальное значение этого числа?

Задача 6 :

Известно, что n-вершинник содержит внутри себя многогранник M с центром симметрии в некоторой точке Q и сам содержится в многограннике, гомотетичном M, с центром гомотетии в точке Q и коэффициентом k.
Найдите наименьшее значение k, если
а) n = 4, b) n = 5

Задача 7 :

Докажите, что существуют арифметические прогрессии произвольной длины, состоящие из различных попарно взаимно простых натуральных чисел.

Задача 8 :

Докажите, что плоскость, делящая в одинаковом отношении площадь поверхности и объем описанного многогранника проходит через центр вписанной в этот многогранник сферы.

Задача 9 :

В треугольнике ABC угол A равен a, а угол B равен 2a. Окружность с центром в точке C радиуса CA пересекает прямую, содержащую биссектрису внешнего угла при вершине B в точках M и N.
Найдите углы треугольника MAN.




  • 1 вариант    |       2 вариант    |       3 вариант




  • Олимпиада по математике:

    Олимпиада по математике 1 класс
    Олимпиада по математике 2 класс
    Олимпиада по математике 3 класс
    Олимпиады 4 класс    |   2 вариант
    Олимпиады 5 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 6 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 7 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 8 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 9 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 10 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 11 класс
           1 вариант   |   2 вариант   |   3 вариант


    Задачи по математике:

    Математика   1 класс
    Математика   2 класс
    Математика   3 класс
    Математика   4 класс
    Математика   5 класс
    Математика   6 класс
    Математика   7 класс
    Математика   8 класс
    Математика   9 класс
    Математика   10 класс


    Задачи с решением:

    Задачи 6 кл. с решением
    Задачи 7 кл. с решением
    Задачи 8 кл. с решением
    Задачи 9 кл. с решением
    Задачи 10 кл. с решением
    Задачи 11 кл. с решением
    Трудные задачи младшие классы
    Сложные задачи старшие классы


    Контрольные работы:

    1 класс:             №1    №2    №3
    2 класс:             №1    №2    №3
    3 класс:             №1    №2    №3
    4 класс:             №1    №2    №3
    5 класс:             №1    №2    №3
    6 класс:             №1    №2    №3
    7 класс:             №1    №2    №3
    8 класс:             №1    №2    №3


    Математика. Графики функций:

    Графики функций
    Линейная
    Квадратичная
    Степенная
    Показательная
    Логарифмическая
    Тригонометрическая


    Будь в числе первых!
    Открытая группа:
    Решение школьных олимпиад.
    Решаем, обсуждаем, спорим, помогаем.




    Олимпиадные задания по математике с решением и ответами

    Яндекс.Метрика Рейтинг@Mail.ru
    ^Наверх^