Олимпиады по математике с решением 7 класс
         Олимпиада по математике: задания, решения и ответы на портале 4egena100

Олимпиады по математике с решением 7 класс.           Олимпиадные задания по математике с решением и ответами

Олимпиады по математике с решением и ответами



Олимпиады по математике с решением 7 класс




Олимпиады по математике с решением 7 класс.


Задача № 1 :

График линейной функции отсекает от второй координатной четверти равнобедренный прямоугольный треугольник с длинами катетов, равными 3. Найдите эту функцию.

Решение :

Данный график образует с осью абсцисс такой же угол в 45, как и биссектриса первого и третьего координатных углов. Значит, ее угловой коэффициент равен 1. Поскольку при x = 0 значение функции равно 3, то искомая функция есть y = x + 3.



Задача 2 :

Банк ОГОГО меняет рубли на тугрики по 3000 рублей за тугрик, и еще берет 7000 рублей за право обмена независимо от меняемой суммы. Банк ЙОХОХО берет за тугрик 3020 рублей, а за право обмена берет 1 тугрик (тоже независимо от меняемой суммы). Турист установил, что ему все равно, в каком из банков менять деньги. Какую сумму он собираетс менять?

Решение :

Если у туриста было X рублей, то в банке ОГОГО он получит за них (X – 7000) / 3000 тугриков, а в банке ЙОХОХО X / 3020 – 1 тугриков. Решая уравнение ( x – 7000 ) / 3000 = X / 3020 – 1, получаем X = 604000 (руб.).



Задача 3 :

Из чисел A, B и C одно положительно, одно отрицательно и одно равно 0. Известно, что A = B (B – C). Какое из чисел положительно, какое отрицательно и какое равно 0? Почему?

Решение :

Если A = 0, то либо B = 0, либо B – C = 0. Ни то, ни другое невозможно. Поэтому A не 0. Если B = 0, то и A = 0. Это тоже невозможно. Поэтому B не 0. Следовательно, C = 0, и равенство из условия задачи можно переписать в виде A = B . Отсюда следует, что B > 0. Значит, B положительно, а A – отрицательно.



Задача 4 :

ABC – прямоугольный треугольник с гипотенузой AB. На прямой AB по обе стороны от гипотенузы отложены отрезки AK = AC и BM = BC. Найдите угол KCM.

Решение :

По теореме о внешнем угле треугольника сумма углов CKA и KCA равна углу CAB. Поскольку треугольник CAK – равнобедренный, KCA = CKA = CAB / 2. Аналогично, BCM = BMC = CBA / 2. Таким образом, KCM = KCA + ACB + BCM = ACB + ( CAB + CBA) / 2 = 90 + 45 = 135.



Задача 5 :

Можно ли расположить в кружочках на рисунке натуральные числа от 1 до 11 так, чтобы суммы трех чисел на каждом из пяти выходящих из центра отрезков равнялись одному и тому же числу A, а суммы пяти чисел в вершинах внутреннего и внешнего пятиугольников равнялись одному и тому же числу B? Если да, то как? Если нет, то почему?

Решение :

Покажем, что расставить числа требуемым образом нельзя. Допустим, это удалось. Обозначим через X число, стоящее в центральном кружочке. Все остальные числа стоят в кружочках, образующих два пятиугольника. Поэтому X + 2B = 1 + ......+ 11 = 66, откуда X = 66 – 2B. Значит, число X должно быть четным. Теперь сложим все суммы чисел, стоящих на выходящих из центра отрезках. Получится 5A. При этом число X будет сосчитано пять раз, а все остальные – по одному разу. Поэтому 5A = 4X + (1 + ........... + 11) = 4X + 66 (1). Значит, число 4X + 66 должно делиться на 5. Этому условию среди чисел от 1 до 11 удовлетворяют только числа 1, 6 и 11, и при этом только число 6 четно. Следовательно, X = 6. Подставляя найденное значение X в уравнение (1), находим, что A = 18. Стало быть, на каждом из пяти выходящих из центра отрезков сумма двух чисел, стоящих там вместе с числом X, должна равняться 18 – 6 = 12. Получается, что на одном отрезке должны стоять числа 1 и 11, 2 и 10, 3 и 9, 4 и 8, 5 и 7. Заметим, что три из пяти перечисленных пар состоят из нечетных чисел, а две – из четных. Поэтому в вершинах каждого из двух пятиугольников должны стоять три нечетных и два четных числа. Это означает, что число B должно быть нечетным. Но из доказанного выше равенства X = 66 – 2B при X = 6 получаем B = 30. Противоречие.




Задача 6


Решить уравнение в целых числах:

(x – y)3 + (y – z)3 + (z – x)3 = 30


Решение:


Преобразовав данное уравнение, получим:

3(x – y)(y – z)(z – x) = 30 или
(x – y)(y – z)(z – x) = 10.

Значит, целые числа
(x – y), (y – z), (z – x) — делители числа 10,
сумма этих делителей равна нулю.
Не трудно убедиться,
что таких делителей у числа 10 нет.



Задача 7


В выпуклом четырехугольнике ABCD выполняется неравенство
AB + BD < AC + CD.
Докажите неравенство AB < AC


Решение:


Пусть точка O — пересечение диагоналей AC и BD.
По неравенству треугольника
AO + BO > AB,
OC + OD > CD, откуда

(AO + OC) + (BO + OD) > AB + CD, или (после преобразований)
AB + CD < AC + BD.
Сложив это неравенство с данным в условии, получим:
2AB + BD + CD < 2AC + CD + BD,
откуда AB < AC.

  
  • 1 вариант    |       2 вариант    |       3 вариант




  • Олимпиада по математике:

    Олимпиада по математике 1 класс
    Олимпиада по математике 2 класс
    Олимпиада по математике 3 класс
    Олимпиады 4 класс    |   2 вариант
    Олимпиады 5 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 6 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 7 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 8 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 9 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 10 класс
           1 вариант   |   2 вариант   |   3 вариант
    Олимпиады 11 класс
           1 вариант   |   2 вариант   |   3 вариант


    Задачи по математике:

    Математика   1 класс
    Математика   2 класс
    Математика   3 класс
    Математика   4 класс
    Математика   5 класс
    Математика   6 класс
    Математика   7 класс
    Математика   8 класс
    Математика   9 класс
    Математика   10 класс


    Задачи с решением:

    Задачи 6 кл. с решением
    Задачи 7 кл. с решением
    Задачи 8 кл. с решением
    Задачи 9 кл. с решением
    Задачи 10 кл. с решением
    Задачи 11 кл. с решением
    Трудные задачи младшие классы
    Сложные задачи старшие классы


    Контрольные работы:

    1 класс:             №1    №2    №3
    2 класс:             №1    №2    №3
    3 класс:             №1    №2    №3
    4 класс:             №1    №2    №3
    5 класс:             №1    №2    №3
    6 класс:             №1    №2    №3
    7 класс:             №1    №2    №3
    8 класс:             №1    №2    №3


    Математика. Графики функций:

    Графики функций
    Линейная
    Квадратичная
    Степенная
    Показательная
    Логарифмическая
    Тригонометрическая


    Будь в числе первых!
    Открытая группа:
    Решение школьных олимпиад.
    Решаем, обсуждаем, спорим, помогаем.




    Олимпиадные задания по математике с решением и ответами

    Яндекс.Метрика Рейтинг@Mail.ru
    ^Наверх^