Школьные олимпиады
         Олимпиада       Олимпиадные задания решения ответы на портале 4egena100

Олимпиадные задания по математике 10 класс с решением


Олимпиадные задания по математике 10 класс с решением.


Олимпиадные    задания   по   математике.         10   класс.

1.

Назовем "соросовским произведением" двух различных чисел, a и b, число a + b + ab. Можно ли, исходя из чисел 1 и 4, после многократного применения этой операции к уже полученным произведениям получить:
а) число 1999;
б) число 2000?



2.

На валютной бирже продаются динары (D), гульдены (G), реалы (R) и талеры (T). Биржевые игроки имеют право совершать сделку купли-продажи с каждой парой валют не более одного раза в день. Курсы обмена следующие: D = 6G; D = 25R; D = 120T; G = 4R; G = 21T; R = 5T. Утром у игрока имелось 32 динара. Какое максимальное число
а) динаров;
б) талеров
он может получить к вечеру?



3.

Центр окружности, проходящей через середины всех сторон треугольника АВС, лежит на биссектрисе его угла С. Найдите сторону АВ, если ВС = а, АС = b(a не равно b).



4.

Решите уравнение



5.

Известно, что существует прямая, делящая периметр и площадь некоторого описанного около окружности многоугольника в одном и том же отношении. Докажите, что эта прямая проходит через центр указанной окружности.

6.

Пусть a3 a – 1 = 0. Найдите точное значение выражения



7.

Пусть прямая, перпендикулярная стороне AD параллелограмма ABCD, проходящая через точку В, пересекает прямую CD в точке M, а прямая, проходящая через точку В и перпендикулярная стороне CD, пересекает прямую AD в точке N. Докажите, что прямая, проходящая через точку В перпендикулярно диагонали АС, проходит через середину отрезка MN.



8.

Имеется 100 положительных чисел a1, a2, …, a100 таких, что

Докажите, что a1 Чa2 ЧЧ a100 і (99)100.



9.

Докажите, что для любого l > 3 найдется число х, для которого
sin x + sin lx і 1,8



10.

Возьмем на стороне ВС треугольника АВС произвольную точку D и проведем окружность через точку D и центры окружностей, вписанных в треугольники ABD и АCD. Докажите, что все окружности, полученные для различных точек D стороны ВС, имеют общую точку





Олимпиада по математике:

Олимпиада по математике 1 класс
Олимпиада по математике 2 класс
Олимпиада по математике 3 класс
Олимпиады 4 класс    |   2 вариант
Олимпиады 5 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 6 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 7 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 8 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 9 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 10 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 11 класс
       1 вариант   |   2 вариант   |   3 вариант


Задачи по математике:

Математика   1 класс
Математика   2 класс
Математика   3 класс
Математика   4 класс
Математика   5 класс
Математика   6 класс
Математика   7 класс
Математика   8 класс
Математика   9 класс
Математика   10 класс


Задачи с решением:

Задачи 6 кл. с решением
Задачи 7 кл. с решением
Задачи 8 кл. с решением
Задачи 9 кл. с решением
Задачи 10 кл. с решением
Задачи 11 кл. с решением
Трудные задачи младшие классы
Сложные задачи старшие классы


Контрольные работы:

1 класс:             №1    №2    №3
2 класс:             №1    №2    №3
3 класс:             №1    №2    №3
4 класс:             №1    №2    №3
5 класс:             №1    №2    №3
6 класс:             №1    №2    №3
7 класс:             №1    №2    №3
8 класс:             №1    №2    №3


Математика. Графики функций:

Графики функций
Линейная
Квадратичная
Степенная
Показательная
Логарифмическая
Тригонометрическая


Будь в числе первых!
Открытая группа:
Решение школьных олимпиад.
Решаем, обсуждаем, спорим, помогаем.




Олимпиадные задания по математике 10 класс с решением

Реальные варианты олимпиад для 9, 10, 11 классов с подробным решением задач и развернутыми ответами.

Яндекс.Метрика Рейтинг@Mail.ru
^Наверх^