Школьные олимпиады
         Олимпиада       Олимпиадные задания решения ответы на портале 4egena100

Олимпиадные задания по математике 11 класс с решением


Олимпиадные задания по математике 11 класс с решением.


Олимпиадные    задания   по   математике.         11   класс.

1.

В игре участвуют два игрока А и Б. Игрок А задаёт значение одного из коэффициентов a, b или c многочлена
x3 + ax2 + bx + c.
Игрок Б указывает значение любого из двух оставшихся коэффициентов. Затем игрок А задаёт значение последнего коэффициента. Существует ли стратегия игрока А такая, что как бы ни играл игрок Б, уравнение
x3 + ax2 + bx + c = 0
имеет три различных (действительных) решения?



2.

Пусть
f(x) = (...((x – 2)2 – 2)2 – 2)2... – 2)2
(здесь скобок ( ) – n штук). Найдитеf І(0)



3.

Числа a , b и c таковы , что
a2 + b2 + c2 = 1.
Докажите, что
a4 + b4 + c4 + 2(ab2 + bc2 + ca2)2 Ј 1.
При каких a, b и c неравенство превращается в равенство?



4.

Пусть прямая L перпендикулярна плоскости P. Три сферы попарно касаются друг друга так, что каждая сфера касается плоскости P и прямой L. Радиус большей сферы равен 1 . Найдите минимальный радиус наименьшей сферы.



5.

На валютной бирже острова Удача продают динары (D), гульдены (G), реалы (R) и талеры (T). Биржевые маклеры имеют право совершить сделку купли-продажи с любой парой валют не более одного раза за день. Курсы валют такие: D = 6G, D = 25R, D = 120 T, G = 4R, G = 21T, R = 5T. Например, запись D = 6G означает,что 1 динар можно купить за 6 гульденов (или 6 гульденов можно продать за 1 динар). Утром у маклера было 80 динаров, 100 гульденов, 100 реалов и 50400 талеров. Вечером у него было одинаковое число динаров и талеров. Каково максимальное значение этого числа?



6.

Известно, что n-вершинник содержит внутри себя многогранник M с центром симметрии в некоторой точке Q и сам содержится в многограннике, гомотетичном M, с центром гомотетии в точке Q и коэффициентом k. Найдите наименьшее значение k, если
а) n = 4, b) n = 5



7.

Докажите, что существуют арифметические прогрессии произвольной длины, состоящие из различных попарно взаимно простых натуральных чисел.



8.

Докажите, что плоскость, делящая в одинаковом отношении площадь поверхности и объем описанного многогранника проходит через центр вписанной в этот многогранник сферы.



9.

Найдите наибольшее c такое, что для любого l і 1
найдется a, удовлетворяющее неравенству
sin a + sin al і c.



10.

В треугольнике ABC угол A равен a, а угол B равен 2a. Окружность с центром в точке C радиуса CA пересекает прямую, содержащую биссектрису внешнего угла при вершине B в точках M и N. Найдите углы треугольника MAN.





Олимпиада по математике:

Олимпиада по математике 1 класс
Олимпиада по математике 2 класс
Олимпиада по математике 3 класс
Олимпиады 4 класс    |   2 вариант
Олимпиады 5 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 6 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 7 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 8 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 9 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 10 класс
       1 вариант   |   2 вариант   |   3 вариант
Олимпиады 11 класс
       1 вариант   |   2 вариант   |   3 вариант


Задачи по математике:

Математика   1 класс
Математика   2 класс
Математика   3 класс
Математика   4 класс
Математика   5 класс
Математика   6 класс
Математика   7 класс
Математика   8 класс
Математика   9 класс
Математика   10 класс


Задачи с решением:

Задачи 6 кл. с решением
Задачи 7 кл. с решением
Задачи 8 кл. с решением
Задачи 9 кл. с решением
Задачи 10 кл. с решением
Задачи 11 кл. с решением
Трудные задачи младшие классы
Сложные задачи старшие классы


Контрольные работы:

1 класс:             №1    №2    №3
2 класс:             №1    №2    №3
3 класс:             №1    №2    №3
4 класс:             №1    №2    №3
5 класс:             №1    №2    №3
6 класс:             №1    №2    №3
7 класс:             №1    №2    №3
8 класс:             №1    №2    №3


Математика. Графики функций:

Графики функций
Линейная
Квадратичная
Степенная
Показательная
Логарифмическая
Тригонометрическая


Будь в числе первых!
Открытая группа:
Решение школьных олимпиад.
Решаем, обсуждаем, спорим, помогаем.




Олимпиадные задания по математике 11 класс с решением

Реальные варианты олимпиад для 9, 10, 11 классов с подробным решением задач и развернутыми ответами.

Яндекс.Метрика Рейтинг@Mail.ru
^Наверх^